基于高性能ADC前端实现整套标准功能的应用设计

    ADC   需要有充足的信号采集模拟     接口   ,才能获得最佳性能。传统的通用ADC前端包括多个差分输入通道,数字可编程增益,以及跟踪与保持功能。本设计实例给出了一个完整的高性能、低元件数的全新ADC前端,实现了整套的标准功能(图1)。不过,它还带有飞跨     电容   差分输入概念,以及早先一个设计实例所描述的发散指数负时间常数(参考文献1)。本设计实例为该     电路   增加了多工输入以及一个通用的跟踪保持功能。

 基于高性能ADC前端实现整套标准功能的应用设计_设计制作_接口/总线/驱动

图1:这款高性能、低元件数的ADC前端实现了标准功能组。

多路器地址与保持模式状态位控制着信号的采集与整形。当保持态为零,多路器地址等于所选的输入通道时,飞跨电容C1连接到正、负差分输入端,用于输入电压的采集。保持态转换为1时将C1与输入端隔离。于是多路器地址为0,保持态返回0,开始对输入电压作负时间常数的指数放大。从这一点,直到再次保持,并且连接的ADC作采样,以及转换输出电压的点,输入电压和输出电压都是时间的发散指数函数,增益等于2(1+t/10μs)。

 基于高性能ADC前端实现整套标准功能的应用设计_设计制作_接口/总线/驱动

图2:只有放大期间时序的分辨率限制着增益设定的精度。

这个新电路建立在较早设计的基础上,拥有多台仪器差分输入所需要的特性。另外,     电阻   匹配问题和运放的CMR(共模抑制)都不会限制电路的 CMR。杂散电容是对CMR的一个影响因素,但可以通过电路的精心布局,尽可能减少这一电容。电路亦有轨至轨的输入,以及几乎无限制的可编程增益。此外,增益设置的分辨率只受放大期间的时序分辨率影响(图2和图3)。此电路亦有±10V的输出幅度,比单片数字可编程增益     仪表放大器   要高出一至三倍。

 基于高性能ADC前端实现整套标准功能的应用设计_设计制作_接口/总线/驱动

图3:这个输入、输出电压增益图给出了跟踪/放大逻辑转换的持续时间。

所选运放的固有噪声与直流精度、指数时序生成的精度与可重复性、ADC采样分辨率,以及RC时间常数的稳定性等,都是信号处理性能和     放大器   精度的主要限制因素,如其增益设定精度、直流误差、噪声以及抖动等。在电路中,1 ns的放大期间时序误差或抖动就相当于0.007%的增益设定误差。

责任编辑:gt

31
196
0
4

相关资讯

  1. 1、Win10电脑文件夹打开特别慢怎么回事?4639
  2. 2、万彩动画大师如何创建新工程文件?万彩动画大师创建新工程文件的方法4458
  3. 3、课程格子APP怎么修改密码?课程格子APP修改密码的方法456
  4. 4、vue怎么加速视频?vue视频加速的方法3829
  5. 5、U盘格式化后提示被写保护怎么解决?4326
  6. 6、铁路12306如何查看会员积分?铁路12306查看会员积分的方法2259
  7. 7、第一弹如何发布长视频?第一弹发布长视频的方法4757
  8. 8、领游app如何预定酒店?领游app预定酒店的方法4911
  9. 9、Win10电脑很多软件都显示模糊怎么办?2454
  10. 10、逗拍APP中是怎么压缩视频?逗拍APP中压缩视频的方法3444
全部评论(0)
我也有话说
0
收藏
点赞
顶部