​机器学习算法可以教人工智能来估计油的粘度

​机器学习算法可以教人工智能来估计油的粘度_人工智能_AI+


一组Skoltech科学家开发了机器学习(ML)算法,该算法可教授人工智能(AI)以基于核磁共振(NMR)数据确定机油粘度。该新方法可用于石油工业和其他部门,这些部门必须依靠间接测量来表征物质。这项研究发表在《能源与燃料》杂志上。


粘度是石油和石化产品的重要参数,对生产和加工具有影响,同时有助于更好地理解和模拟储层的自然过程。标准的油粘度评估和监控技术非常耗时和金钱,有时在技术上不可行。


由于材料具有吸收和发射电磁能的能力,因此NMR可以帮助确定特性。油是碳氢化合物的化学非均质混合物,这使得NMR结果的解释极为困难。


来自Skoltech,卡尔加里大学(加拿大)和科廷大学(澳大利亚)的一组科学家使用ML算法处理了NMR数据。


他们的模型基于来自加拿大和美国油田的各种类型油的NMR数据进行了训练,得出了粘度的准确预测值,这一点已通过实验室测试得到了证实。


据Skoltech碳氢化合物回收中心(CHR)教授Dmitry Koroteev表示,他们的研究表明ML算法如何帮助表征间接测量的材料特性,更具体地说,是使用NMR测量而非粘度测量在实验室里。


实际上,这意味着人们可以获取地下储层中有关油的信息,而无需提取样本并将其带到实验室进行测试。“令人惊讶的是,机器学习在这里比传统的相关性更好。”科罗捷耶夫教授评论说。“我们可以直接或间接进行的实验测量对我们的ML算法是一个很好的训练。测试表明,该算法具有良好的泛化能力,不需要重新训练。”


“特别有趣的是在超重油和沥青样品上获得的高精度ML模型。由于它们复杂的化学组成,对于这些油类型,NMR弛豫和粘度之间的关系尚不明确。对于经验模型,解决方法是进行其他测量以确定油的相对氢指数(RHI),这些信息通常不容易获得或很难在现场进行准确测量。我们的研究表明,使用ML衍生的NMR粘度型号,则无需进行这些测量。”-Skoltech-Curtin博士解释说。该论文的第一作者学生Strahinja Markovic。


科学家们相信,他们的方法可以在石油工业之外找到用途。并非总是可以将测试样品用于直接测试,这使得间接测量成为各种行业的幸运选择,例如食品行业,即使不切开水果也可以测试水果的质量,或者在农业中土壤质量评估可以覆盖更大的区域。

66
39
0
45

相关资讯

  1. 1、研究人员开发新的OLED架构具有创纪录的像素密度且成本更低433
  2. 2、云计算在不久的将来会发生什么样的变化907
  3. 3、最新的光电导开关可以产生6ps的电脉冲,有望突破自旋电子设备的运行速度475
  4. 4、合肥综合性国家科学中心人工智能研究院启动建设,整合全球AI研发资源1548
  5. 5、新型“近乎零损耗”的温度传感器已问世1822
  6. 6、2021年控制数据的4种趋势方法1918
  7. 7、华工科技抢占5G市场风口,高端光芯片拟今年量产2815
  8. 8、2018年中国LED芯片行业调研报告最新出炉1676
  9. 9、光电传感器的工作方式和分类2807
  10. 10、2019年手机行业发展趋势预测4363
全部评论(0)
我也有话说
0
收藏
点赞
顶部